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This paper deals with the recrystallization and grain growth processes of a low nickel
stainless steel. Samples of steel sheets with various cold rolling degrees were annealed at
different temperatures and the recrystallization and grain growth kinetics have been
studied. The grain size of the samples has been determined via automatic image analysis
and transformed to 3-D values according to the Saltykov model. The experimental data
have been analysed according to a modified model developed using the statistical
approach by Abbruzzese and Lucke for the grain growth. This approach supplies a unified
equation describing at the same time primary recrystallization and grain growth. The
values of the dislocation density obtained from the comparison of theoretical predictions
and experimental data of the grain mean radius are properly correlated to the mechanical
properties of the steel. C© 2001 Kluwer Academic Publishers

1. Introduction
Nickel containing austenitic stainless steels have been
indispensable for the progress of technology during
the last 80 years. Due to the cost of nickel and to the
prospected possibility of allergic reactions caused by
this element, more and more laboratories and industries
are trying to develop a new class of austenitic stainless
steels without nickel [1–4].

To maintain the austenitic microstructure, Ni reduc-
tion is balanced by nitrogen addition. These nitro-
gen alloyed austenitic stainless steels exhibit attrac-
tive properties as high strength and ductility, good
corrosion resistance and reduced tendency to grain
boundary sensitation [5]. Since nitrogen increases the
stability of austenite phase against the martensite for-
mation [6], nitrogen alloyed austenitic stainless steels
can be strengthened by cold working without any mas-
sive formation of strain induced martensite, leading to
higher mechanical properties and to a good balance
between toughness and tensile properties. In this new
class of stainless steels the presence of a high man-
ganese content is required to attain the high nitrogen
concentration in the melt avoiding the tendency to Cr2N
formation [7].

A deep understanding of the recrystallization and
grain growth processes is needed as they reflect on the
mechanical properties of the steel. Nonetheless, these
mechanisms have not been investigated in low nickel
austenitic stainless steels. Then, the primary recrystal-
lization and grain growth in a low nickel austenitic
stainless steel are here studied using a statistical
model.

2. Outline of the statistical model
It is well known that the driving force of primary recrys-
tallization is mainly related to the system tendency to
eliminate the deformation energy (dislocations) intro-
duced by cold working. The release of the deformation
energy during heat treatment, activates the movement
of dislocations and subgrain boundaries thus restoring
a “dislocation free” microstructure. Under further heat
treatment grain growth, activated by boundary energy
reduction, is the predominant process.

There have been several attempts to simulate primary
recrystallization by computer modelling [8–10]. Such
models are capable of predicting grain size distributions
as well recrystallization kinetics. Several theories have
also been developed to simulate the behaviour of grain
growth after primary recrystallization. These theories
do not describe the behaviour of single grains, and allow
only statistical averages of the behaviour to be derived.
Early theories were due to Hillert [11] and to Cahn and
Pedawar [12].

Although the large number of existing models, they
are not sophisticated enough to treat simultaneously and
continuously both recrystallization and grain growth.
In the study reported here, an integrated mathematical
model, able to describe the primary recrystallization
and grain growth in low nickel austenitic stainless steel
as interplaying phenomena is used.

In this preliminary application, the model assumes
the case of “uniform grain boundary”, namely it does
not take into account any orientation differences be-
tween the different grains. Although at the present the
theoretical foundations of the statistical model has been

0022–2461 C© 2001 Kluwer Academic Publishers 593



recognised to be strictly linked to fundamental laws
[13, 14], here, for the sake of simplicity, a more heuris-
tic approach is used [15–17]. The model is based on
three further assumptions:

The assumption of superposition of average grain cur-
vatures in individual grain boundaries. A grain ν
characterised by a volumeVν is assumed to grow at
the expenses of a neighbouring grainµ with a rate:(

dVν
dt

)
µ

= sνµm2γ

(
1

Rµ
− 1

Rν

)
= Msµν

(
1

Rµ
− 1

Rν

)
(1)

whereRν is the radius of a grainν, sνµ (=sµν) is the
area of contact between the two grainsν andµ, and
m, γ , andM = 2mγ represent the mobility, the sur-
face tension and the grain boundary (µν) diffusivity
respectively.

By taking into accounts allNν neighbours of a
grain the total growth rate is obtained:(
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with µ= 1, 2, . . . , NG andNG being the total num-
ber of grains in the unit volume. This expression rep-
resents a system ofNG differential equations for the
unknownsRν(t). Due to the large number of grains
NG, and thus of differential equations necessary to
obtain a significant simulation, this leads to great
computational difficulties. Therefore, further simpli-
fying assumptions are introduced in the model.

The assumption of homogeneous surroundings of the
grains. As a first approximation it is assumed that a
surrounding matrix, identical for all the grains with
the same radius, can replace the individual neigh-
bourhood of any grain. Following this assumption
all the grains of the same size will grow with the
same rate. Then, they can be collected in classes
characterised by their sizeRi and frequencyni and
the analysis can be scaled up to study the behaviour
a grain classes, instead of single grains.

From the mathematical point of view the simplifica-
tion consists in replacing in Equation 1 the individual
contact areassµν by averaged areasai j , whereai j = Ai j

ni
,

nj is the total number of grains in classj andAi j is the
total area of contact between the two classesi and j .
Then, it follows that:

dRi

dt
= M

4πR2
i

∑
j

ai j

(
1

Rj
− 1

Ri

)
(4)

The assumption of a random array of the grains, namely
the probability of contact among the grains is only

depending on their relative surface in the system. In
this case the area of a grain of the classi is divided
between the neighbouring grains of the classj in
proportion to the individual surface area:

ai j = 4πR2
i pj , pj =

nj R2
j∑

j n j R2
j

(5)

The integration of all the above assumptions in the
model leads to the following final form of the grain
growth rate equation:

dRi

dt
= M

∑
j

(
1

Rj
− 1

Ri

)
pj (6)

To describe the recrystallization process integrated
with the grain growth, it is necessary to propose an
extended growth equation which enables to contem-
porarily and continuously analyse the evolution of
free nuclei in the matrix passing through partially
impinged grains up to full contact.

For recrystallization a nucleus must have the follow-
ing characteristics:

• It must be more perfect than its neighbours; that
is, it must contain fewer dislocations and thereby
a lower strain energy.
• The boundaries of the subgrain must be mobile by

virtue of sufficient lattice misorientation between
the subgrain and its neighbours. Sufficient misori-
entation might be about 15◦, referred to a common
axis of rotation.
• It must be large enough so that the additional in-

terfacial energy that must be supplied for growth
is less than the volume free energy released when
strained cells are replaced by a strain-free subgrain.

In our approach recrystallization nuclei (sub-grains)
are considered pre-existing in the deformed microstruc-
ture and characterized by their size distribution. More-
over, the grains are assumed to be all activated from the
beginning and freely growing in the deformed matrix
until they get in contact to each other. This process is
characterised by a gradual transition from a deforma-
tion gradient activated growth, to a proper grain growth
process activated by only boundary energy reduction.
The final integrated equation for recrystallization and
grain growth can therefore be written as:

dRi

dt
= m1

(
Gb2

3
1ρ − 2γ1

Ri

) i ∗−1∑
j=1

pj

+m2γ2

nc∑
j=i ∗

pj

(
1

Rj
− 1

Ri

)
(7)

where G is the shear modulus of the material,b
is the Burger vector,ρ is the dislocation density,
1ρ= ρd− ρr, is the difference between the disloca-
tion densities in the deformed and in the recrystallized

594



material;m1, γ1, m2 and γ2 are the grain boundary
mobility and the surface energy of the freely grow-
ing grains in the deformed matrix and that of grains in
contact respectively;i ∗ is the minimum class index of
grains in contact with grains “i ”.

Assumingm1≈m2 andγ1≈ γ2 [18], Equation 7 can
be written as:

dRi

dt
= m

[(
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+ γ
nc∑
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)]
(8)

The criterion for identifying the critical classi ∗, is ob-
tained by defining an average influence volume, and
consequently an influence radiusRm, calculated as fol-
lows:

VM = 1

NT
−

n∑
i=1

ni νi

NT
= 1

NT
(1− FV) (9)

whereNT is the total number of grains per cm3, FV is
the recrystallized volume fraction andνi is the volume
of the grain of the class andni is the number of grains of
volumeνi . Rm varies from (3/4πNT)1/3 to zero when
all the grains are in contact. Then, theRm parameter
defines an indexi ∗ that discriminates the class over
which all the grains are in contact.

3. Materials and experimental procedure
The chemical composition of the low nickel steel (here-
after LNi) studied in this paper is shown in Table I. In
particular, it can be noted the high content of nitrogen,
which favours theγ -phase stability and increases the
mechanical properties of the steel, and the high con-
tent of manganese, which favours the solubilisation of
nitrogen.

Samples of low Ni and high N steel were cold
rolled down to different thickness with reduction grades
of 80% (1 mm thickness), 60% (2 mm thickness),
40% (3 mm thickness) and then annealed in labora-
tory at T = 1100◦C for different times (up to 5 min).
Temperature-time profiles during heating and quench-
ing were measured and interpolated by polynomial fit-
ting. After electrochemical etching in a solution con-
taining HNO3 and HCl, samples were analysed for
grain size determination through automatic optical im-
age analyser. Micro-hardness measurements were per-
formed on the samples and related to the recrystallized
volume fraction. Tensile stresses were related to the
dislocation densityρ used as a fitting parameter in the
statistical model.

TABLE I Chemical compositions of the material (mass %)

C Mn Ni Cr N Mo Cu S P Si

LNi 0.026 10.5 0.42 18.6 0.40 0.07 0.07 0.003 0.026 0.04

4. Results and discussion
4.1. Data elaboration
After grain size determination by automatic image anal-
yser, experimental data have been transformed in 3-D
according to the Saltykov model [19] and fitted by the
statistical recrystallization model.

The temperature dependence of the boundary mobil-
ity was taken into account through the incorporation
of the measured heating profiles in the microstructural
model accordingly with the Stokes-Einstein relation-
ship:

m= D

KBT
= D0

KBT
e−

1E
KBT (10)

where D is the diffusion coefficient,KB is the
Boltzmann constant,1E is the activation energy of the
process,T is the temperature. It is thus possible to take
into accounts the effect of the annealing treatment on
the material, by introducing in Equation 10 the function
T = T(t) from the measured temperature-time profile.

D was chosen as a first approximation proportional to
the diffusion coefficient of Fe in Fe-γ [20]. The propor-
tional coefficient has been hold constant for all simu-
lations corresponding to the three different cold rolling
reduction grades. The value of the proportionality co-
efficient between the grain boundary mobility in the
low nickel steel as obtained by fitting the experimen-
tal data, and the one of Fe-γ was 3× 10−6. The initial
number of nucleiN and the dislocation densityρ, the
other input parameters of the model, were considered
as dependent of the cold reduction grade. From a sen-
sitivity study of the model parameters, it came out that
the shape of the initial grain size distribution and the
volume fraction of the nuclei are not very effective on
the kinetics whereas the variation of the number of nu-
clei N is much more effective. Moreover it must be
considered that the average size of nuclei is linked with
N in such a way that the higher the number of nuclei
the lower is their size. Considering the limited effect
on the kinetics and on the final results on the distribu-
tion of grain radii, it has been assumed that the initial
volume fraction and the shape of the size distribution
of the nuclei are not function of the degree of deforma-
tion. Then, for all reduction grades, the average size of
nuclei can be calculated directly from the numberN of
nuclei.

Moreover a variation coefficientk can be defined as
k= σ/R, whereσ is the standard deviation of the radius
distribution andR is the mean radius. The parameter
k has been widely used to describe and compare grain
growth in metals.

4.2. Prediction if the mean radius and of the
variation coefficient

The experimental mean radii of samples of cold rolled
LNi steel at three different reduction grades (40%, 60%,
80%) and annealed at different times are shown in
Figs 1–3. The comparison between the variation co-
efficient as obtained by the statistical model and by
automatic image analyser is also shown. These results
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Figure 1 Mean radius and variation coefficient versus time in the 40% sample. The dashed line represents the time at whichT = 1100◦C is reached
during the annealing. The continuous lines represent the simulations according to the statistical model.

Figure 2 Mean radius and variation coefficient versus time in the 60% sample. The dashed line represents the time at whichT = 1100◦C is reached
during the annealing. The continuous lines represent the simulations according to the statistical model.

TABLE I I Dislocation density and initial number of nuclei used as
input parameters in the simulations

Dislocation density, Initial number of
Cold reduction grade ρ (cm−2) nuclei,N (cm−3)

40 % 5.0× 109 8.6× 109

60 % 2.0× 1010 1.7× 1010

80 % 1.0× 1011 3.0× 1010

show a good agreement between the prediction of the
model and experimental data. The values of the best
fitting parameters used for the simulations are shown
in Table II.

Although a smaller mean radius with a higher cold
reduction should be expected, the same mean radius
values have been obtained for all reduction grades. It
must be noted that, due to the different thickness of the
samples (which come from the same hot rolled coil), the
higher is the cold reduction the higher is the subsequent

heating rate. Therefore, opposite effects are produced
by cold reduction and by the heating rate during grain
growth.

In order to better analyse the effects of the heating
profile on the mean radius during recrystrallization and
grain growth a specific set of simulations has been per-
formed on three LNi strips with different initial thick-
ness (1 mm, 2 mm, 3 mm) cold rolled with the same
reduction grade (80%). The results of the simulations
(using the microstructural parametersρ= 1011 cm−2,
N= 3∗1010 cm−3) are shown in Fig. 4. From these re-
sults it is evident that the different heating profiles, due
to the thickness effect, influence significantly the grain
size showing in particular the relevance of the “time”
spent by the sample at the highest temperatures.

The calculated numbers of nuclei and dislocations
densities are shown in Fig. 5 as a function of the
cold reduction grade. These results not only reflect
the expected behaviour of the recrystallization and
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Figure 3 Mean radius andk versus time in the 80% sample. The dashed line represents the time at whichT = 1100◦C is reached during the annealing.
The continuous lines represent the simulations according to the statistical model.

Figure 4 Influence of the heating profile on the mean radius (continuos lines) calculated according to the statistical model (ρ= 1 ∗ 1011 cm−2,
N= 3 ∗ 1010 cm−3, used for 80% cold reduction) and the experimental heating profiles (dashed lines) corresponding to 1 mm, 2 mm, 3 mm.

Figure 5 Initial number of nucleiN and dislocations densityρ as a function of the cold reduction.
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grain growth process but also represent the connection
between the microstructure characteristics of the de-
formed material and the processing parameters. It is
also worth to mention the tendency to saturation of the
number of nuclei as a function of the dislocation den-
sity shown at high cold reduction grades (see Fig. 6).
Figs 5 and 6 are also of practical importance since, once
the model has been set for a given steel, it is possible
to obtain from them the parameters to simulate the be-
haviour of the same material subjected to different cold
reduction grades.

In order to indirectly validate the dislocation density
data inserted in the model as an input parameter, the va-
lidity of the Taylor dependency betweenρ and the flow
stressσm, which has been found valid in polycrystalline
materials [21], has been tested:

σm ∝ 〈ρ〉0.5 (11)

In Equation 11,ρ is the value obtained by best fitting of
the experimental mean radius with the statistical model

Figure 6 Initial number of nucleiN versus dislocation densityρ.

Figure 7 Power relation between experimental tensile stress and dislocation density. The dashed line represents the fitting according toσm= kρn,
n= 0.43.

and theσm is obtained by tensile stress test. The re-
sults of this correlation are shown in Fig. 7 where a
good agreement (n= 0.43 in comparison to the theo-
retical n= 0.5) between simulation results and Equa-
tion 11 results are obtained. This result is an indirect
proof that the dislocations densityρ already identified
by the model through the best fitting of the mean radius
and the variation coefficient values, are congruent with
the experimental dataσm.

4.3. Prediction of the recrystallized
volume fraction

Due to the general difficulty in determining the re-
crystallized fraction by automatic image analyser in
partially recrystallized samples, a model has been de-
veloped relating the recrystallized fraction to the steel
hardness. Because it is well known that the hardnessδ

is with good approximation proportional to the tensile
strength of the steels, from Equation 11 it can be written:
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δ ∝ σm ∝
√
〈ρ〉 (12)

whereδ is the average value of the hardness of the steel.
On the other hand, the following relation in terms of

dislocation density and recrystallized volume fraction
can be written:

〈ρ〉 = ρRFV + ρC(1− FV) (13)

where〈ρ〉 is the mean dislocation density in the steel,
ρR is the dislocation density of the annealed steel and
ρC corresponds to the deformed steel before anneal-
ing. This relationship is a simple weighted average of
the dislocation density specifically when no recovery
phenomena occur (as it can be considered with a good
approximation for an austenitic matrix) whose presence
could complicate Equation 13 making variableρC dur-
ing the heat treatment depending on a law which should
be defined.

Figure 8 Comparison between the prediction of the recrystallised fraction by the statistical model (continuous line) and by hardness measurements
(marks) in the 40% sample.

Figure 9 Comparison between the prediction of the recrystallised fraction by the statistical model (continuous line) and by hardness measurements
(marks) in the 60% sample.

From Equations 12 and 13 it follows that:

FV = α + βδ2 (14)

with α andβ constant parameters.
From the boundary conditionsδ(FV = 0)= δC and

δ(FV = 1)= δR the following relation can be written
between the recrystallized fraction and the hardness of
the steel as a function of the annealing timet :

FV(t) = δ2(t)− δ2
C

δ2
R− δ2

C

(15)

The comparison of the values of the recrystallized vol-
ume fraction obtained from hardness measurements
and those obtained from the statistical model is shown
in Figs 8–10 for the three different cold reduction
grades.
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Figure 10 Comparison between the prediction of the recrystallised fraction by the statistical model (continuous line) and by hardness measurements
(marks) in the 80% sample.

TABLE I I I Mean radius of samples with different reduction rates at
timestR corresponding to a complete recrystallization

Cold reduction grade, % tR (sec) Mean radius (µm)

40 200 12.1
60 120 7.9
80 60 6.2

The good agreement obtained between indirect ex-
perimental data and model results confirms also in this
case the good quality of the modelisation. In fact, the
prediction of the evolution of the volume fraction by
the recrystallization model (Figs 8–10) should be com-
pared with experimental data (microstructure evolu-
tion) on volume fraction. However, at the present such
measures are rather difficult to be performed with rea-
sonable accuracy and reproducibility by metallographi-
cal methods because of the insufficient definition of the
obtainable microstructure images. Then, Equation 15
provides a valid alternative to more direct experimental
validation of the statistical model.

From the comparison between results reported in
Figs 1–3 and Figs 8–10 it can be observed that at times
corresponding to a complete recrystallization, the lower
is the reduction rate the greater is the mean radius. This
conclusion is in agreement with the fact that at higher
cold reductions higher dislocation densities and thus
higher numbers of nuclei are present in the steel with a
consequent lower mean radius. These results are sum-
marised in Table III.

5. Conclusions
Recrystallization and grain growth have been studied in
samples of a low Ni steel subjected to different reduc-
tion grades. A mathematical model based on statistical
assumptions has been developed and applied to predict
the microstructural evolution of samples subjected to
different heat treatments, taking into account the time

dependence of the temperature in the expression of the
mobility. An independent test on the quality of the fit-
ting parameters has been performed, checking the cor-
relation between the dislocation densities obtained by
fitting the experimental data with the model and the
mechanical properties obtained by tensile stress mea-
surements.

Due to the general difficulty in measuring the recrys-
tallized volume fractionFV by automatic image anal-
yser in partially annealed samples, a model has been
developed correlatingFV to the hardness of the steel.

The results show a good agreement between experi-
mental data and the prediction according to the statis-
tical model.
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